
UNCT.ASS IF D P15) /j [/&•• ,, ,-

SECURITY CLASSIFICATION'O'=S PAGE ,, "//" :
REPORT DOCUMENTATION PAGE FormN Approved

I~ t IoeN. 0704-0188

1a ,REPORI SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
linclassif ied

2a. SECURITY CLASSIFICATQON AUTHORITY 3. DISTRIBUTION 1AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORIN4G ORGANIZATION REPORT NUMBER(S)

BRL-TR-2900

6s. NAME OF PERFORMING ORGANIZATION ' 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
US Army Ballistic Research (If applicable)

Laboratory -ISLCBR_-_TR
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Co=3)

Aberdeen Proving Ground, MD 21005-5066

On. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGAN'ZATION (If applicable)

8c. ADDRESS k City, State, "' ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM ' PROJECT TASK WORK UNIT
ELEMENT NO. Ah NO. [CCSSION NO.

61102A A4

11. TITLE (nclude Security Ciasification)

SINGLE DROPLET STUDIES IN A HOT, 41CH PRESSIRE ENVIRON N '- _.
V1 PRSOJAL AUTHOR(S)'ip clar• A. Beyer

13a. TYPE OF REPORT 13b. TIME COVERED 71 14. DATE OF REPORT (Year, MontA, Day) IS. PAGE COUNT'N-
Final FROM._Jan 96 TOOt f6

16. SUPPLEMENTARY NOTATION

Published in Developments in Experime al Techniques in Heat Transfer and CombustionS1.COSATI CODES Is. S T TERMS (Continue on reverse if necessry and identify by block nutabor)-

* FIELD GROUP SUB-GROUP
S2V 02 Liquid Propellant, Drops, Sprays, Pyrolysis, Ignition•

I TRACT (Continue on revere if necessary and identify by block nurber)

Drops of a multicomponent liquid gun propellant were heated in nitrogen flows up to 6504C
and 1250 psi (8.6 KPa). High speed !maging was used to characterize behavior. Preliminary
observations showed a strong dependence of drop lifetime on temperature and pressure.
Evidence was seen for significant lbiuid phase chemistry before drop microexplosions.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
L-O UNCLASSIFIED/LINLIMITED [OSIAME AS RPT. 0 DTIC USERS Unclassified

22a. NAMF OF RESPONSIBLE INDIVIDUAL Z~b TELEPHONE (include Area Code) 22c. OFFICE SYMBOL
DR. RI~tIAKI) A. HEYER 301-278-7071 SLCRR-IB--

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



TA'LE OF CONTENTS

Page

LIST OF F GURES ........... ..... .............. ............... . 5

1 INTRODUCTION ................................................... . 7

11. EXPERIMENTA ...................................... .. # . ...... 7

III. OBSERVATIONS ................... *.............. ........ ..... .

IV. DISCUSSION ............................................ .

V. FUTURE SJUDIE.S ............................................... 6

VI. CONCLUSION ........................................................ 16

W~KNOWLED(;EHENTS ............................................... 7

RSFE RENCES...................... I . ...... 6 ... ................ 19

I)ISTRIBUTION LIST .................................................. 1

i-i
Acceeglon For"

DTIC TAB

INS Io
jAvatl and1/or

j~A, spoia



LIST OP PFIURES

Figure Page

1 Schematic Diagram of Constant Pressure hpparatus Showing
(A) The Details of the Hleating Device and (B) The Overall
Configuration .............. .. ............ ... . . .. .......... 8

Typical Temperature Record Showing Rapid Rise and Fall With
Damper Action ................. ................ 9

3 Diameter History of 210 M4iz:rometer Diameter Drop of LGP 1846
in 460°C Plow at 150 psi (1.0 KPa) ................................. 11

4 Lifetimes of 240-280 Micrometer Diameter Drops of LGP 1846
as a FunctLon of Flow Temperature at 500 psi (3.4 MPa)...........2

5 Lifetimes of LGP 1846 Drops as a Function of Pressure in
400-5009C Flows for Drop Diameters 240-280 [ 1, 160-210 [0],
and 80-85 [6) Micrometers ......................................... 13

6 Final Frames from Heating a 185 lam Drop' Showing Internal
Bubble Formation and Irop Casification ......... .............. 14

7 Diameter History of a 390 Micrometer Diameter Drop of
LGP 1846 in a 480C Flow at 500 psi (3.4 mPa) ............ ..... 15

5



t. i NrRODUCT LON

The use of liquid monoprope lanti' in a regenerative gun involves a
complex process of high-speed bulk injection and combustion of the
propellant. Unfortunately, little is known about the extent of liquid breakup
into drops before combustion takes place. However, droplets are probably
important in both the ignition and propagation of flame to any bulk
material. In addition, for sub critical studies the surface tension of
individual droplets provides a well defined liquid-gas interface for the
detailed study of the gas evolution from the liquids and flame zone structure
above the liquid surface. Such studies are difficult with bulk liquids.

Earlier studies of droplet heating and ignition have used a variety of
techniques. Typical exanples include moving electrically heated furnaces to
enclose suspended dropsl ' at atmospheric pressure and freely falling highly
reproducible drops at slightly elevated pressures.3 Others have extended
combustion measurements up to 2000 psia (14 MPa) with direct ignition of
drops 4 or drops simulated by liquid on porous spheres. 5

In our previous studies,) liquid propellant drops have been studied in
hot flows at atmospheric pressure, in a manner similar to Law and co-workers. 3

This paper reports our efforts to extend these measurements to gun ignition
pressures. The goal is to ,neasure parameters such as tile delay to ignition
and burning rate as well as studying the details of the ignition and
combustion process s.

Two techniques have been explored La this effort. The first was
prte_.sorization and heating by the combustion of mixtures of gases in a closed
vessel. However, this approach proved to be unsatIsfactory because the motion
of the gases in the chamber was both greater and longer lasting than
expected. Although these observations provided preliminary high pressure
experience with single drops, they were inadequate because of poor
reproducibility; details may be found elsewhere. 7 The second approach was to
use approximately constant pressure with rapid and controlled heat input to
the drop. The use of steady pressurization also increased the safe operation
of tile vessel by a factor of two.

1I.. EXPERIMENTAL

For these observations, a windowed vessel is pre-pressurized. Then, drop
heating is achieved by local resistance heating of a small volume inside the
vessel, opening an electromag:netic damper (shutter), and convecting the hot
gaS over a suspended drop with a small (ca. 3') psi or 0.21 MPa) increase il
total gas pressure. For all of the observations reported here the gas was
nitrogen. Flow velocities have not been rneasured but are estimated from the

motion of thermal risturhances to he on the order of 10 cin/sec. Tie Reynolds
numbers are on the order of ten or less. Timing was nmplemented such that the
heater and recording devices were turned on for an appropriate time before the
dampe- was opened and the gas pressure was increased. This technique lac beenusqed here to stludy ,rop behavior over the range fr,,n 150 to 1250 psi (1.0 to

R•.6 MPa) .

The overall schematic diagram o[ the apparatus is showr, in Figure 1. The
windowed vessel for these sturdies had a cylindrical interior with .a 4.4 cm

I7
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Figure• 1. Schematic Diagram of Cons•tant Pressare Apparatus Showing
(A) The T)etails of the Heating Device and (B) The Overall Configuration
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dianteter; total volume was approximately 230 cm 3 . Events were imaged through
a 90 tnun aperture 2800 mnil focal letirth lens. rypical image area wis a few
millimeters square. Strong back lighting was used. Some studies were
recorded with a 16 imnh high speed camera. However, for the majority of the
work reported here, the imaging was done with a high speed video system (Spin
Physics Model SP?000). In addition to the obvious advantages of rapid
turtnaround, this system wa-. coupled to an 16-bit compelter based video fralne
grabber. Image processing was used to delineate the edges of the drops.
These data were theen fitted to circles or ellipses by a VAX 11/780 to provide
the potential for accurate drop diameter measurements.

Temperature was measured withi a 50 tim chromel-alumel thermocouple mounted
within a few drop diameters downstream front and out of the wake of the drop.
The resulting signal was recorded with typically 5 msec resolution by a
transient recorder. By recoriing temperatures in flows without drops,
modificatiotis were made to minimize turbulence and other effects as indicated
by temperature fluctuations. At near atmospheric pressures the temperature
profiles were almost ideal with a rapid rise and smoothi plateau. 1in contrast,
a typical record from a 300 psi (2.1 MPa) run is shown in Figure 2. Ns can be
seen, the flow degrades at higher pressures.

U
o typical drop -
c00 lifetime

'400I w300- damper
•<da mper
•20 !cl osed
a. closed

I-- heater on100-

00
- I
U- damper opened

i * I * I *• p

0 2 4 6 8
TIME (SEC)

Figure 2. Typical Tpinpeirature IRecord Showing Rapid, Rise and Fall
Wit:i Damper Action

In order to get reprod,1cible drop sizes, a pieioelectrie drop generat.or
was used to produce drops. One drop was caught on a 50 pin fiber and
transferred to the hiolder in the vessel. The drop holders were fused N8 I.4ira
fiber. witli diameters frum 50 to about 1) 1111. Diameters below 25 ijm allowed
even the sealler drops to be quite spherical.



The liquid used in all of thbse observations was the liquid
,'ontopropellant designated LGP 1846. This material is a stoichiometric mixture
of 61% (by weight) hydroxylammonium nitrate (IIAN), 19% triethanolammonium
nicrate (CAN), and 20% water. Much recent work has been done to fully
characterize the physical properties of this class of mateýrials. 8  Briefly,
the density is 1.43 g/ml at 25'C. The boiling point is estimated at 123.70C;
its value cannot be easily measured because of the onset of exothermic
reactions of the HAN near 1209C. The surface tension is not substantially
different from that of water. The vapor pressure has been measured up to 6S°C
to be less than half that of water, probably due to a well organized and
extensive network of hydrogen bonditig in the liqui d. The viscosity behavior
is typical of a molten salt. Viscosity values of 5.47 cst (kinematic) and
7.95 cp (dynamic) have been measured at 25%. The critical point of this
liquid is unknown; it is expected to be outside the range of the present
observations. This material does not have a well defined ignition point.
Rather, slow heating under laboratory conditions results in vaporization of
the water (if in a dry environment), reaction of the IIAN near 120C•, and
finally reaction of the TEAN at higher temperatures. The nature of changes in
this process when heated rapidly and in a combustion environment filled with
water vapor and other combustion products is a goal of the present study.

IllT. OBSERVATI'ONS

Wiih thi8 configuration, the experimental variables were much more
controllable and reproducible than in our combustion-heated studies, but a
strong element of randomness remained. The response of the drops to heating
can be placed in three classes. The first mnode was to change opacity after
pthaps!0ns reset, and rhen decrease in diameter while undergoing some Mhape
distortions probably related to internal chemistry. The circular drop images
from a typical record of this type were computer fit and the results plotted
in Figure 3. Typical uncertainty from the fitting routine is less th&n the
plotting symbols used. Thle zero ol time in Figure 3 is the point at which
heat flow can he seen in the video record. These data should not be compared
to a fuel drop [In an oxidizing flow. In this case there is clearly in-depth
internal chemistry rather than simply heating and vaporization/pyrolysis
followed by gas phase reactions.

The other two modes were related but probably distinct phenomena. -n
both cases the drops remained essentially constant in diameter with an
occasional wisp of vapor trailing off, changed their light transmission
characteristics at some later point, and then in time%• on the order of one
millisecond would vaporize. The distinction in the two modes was that the gas
phase- was translucent in some cases, while in others it was opaque. There was
no attempt made to study the final event in, any more detail because the
earlier changes are a clear indication of internal chemistry which is probably
dominant. In all three of these modes of pyrolysis, internal gas bubbles of
varying size were sometimes observed.

Under r1hese circurnstances, tile only drop parameter tlhat was clearly
unambiguous was the [ifetimie of the drop, defkned as thre time from heat flow
at the drop position to drop disappearance. A!though there is still
considerable scatter in even this very basic parameter, there are at least
correct trends in most cases. Figure 4 shows the lifetimes of a series of 240
to 280 vim drops as a function of finals flow temperature at 500 psi (3.5 MPa).
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Considering the variability of physical appearance of the drops, the trend i-9
surprisingly smooth. The effect of tlhe drop holder on this measurement, as
the liquid nearer the holder was consumed, was generally not considered
important because of the accelerating rate of drop disappearance with time.
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Figure 3. Thiamcter His tory of 210 Micrometer Diameter Drop of LOP 1846
in 460'C Flow at t50) psi (1.0 MWa

Figure 5 shows the observed lifetimes from several observations as a
function of pressure at final flow temperatures around 4500C. The amount of
apparent scatter is exacerbated by the multiple drop sizes on one plot.
However, the 240-240 irm data, acquired as a systematic set, show a good trend
with reasonable scatter except for the point at 505 >si (3.5 MPa). Overall,
these data suggest that there is an upper limit for the lifetime under given
conditions, but that uncontrolled factors are decreasing the values some of
the time.

Although microexplosions which destroyed the drops were still observed
under conditions where heating was less than maximum and longer times occurred
before drop reaction, they most frequently were not present for drops in the
40 to 280 pm diameter range in this experiment. However, major gas bubble
formation was not ,incommon. When microexplosions were observed, they differed
in appearance from those observed at ambient pressure in that the entire drop
would appear to be involved in liquid phaseo reactions. Rather than breaking
the drop into a shower of smaller droplets, at these pressures the drop would
balloon up and become a cloud of gases. These observations are well below the
predicted critical pressure of the original material. Thus it is likely that
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the observed behavior is due to liquid phase reactions, either front rapid

decomposition and gasification of the drop or from reactions which result in a
liquid which is above its critical point. Representative behavior is shown in
Figure 6, with the final frames from heating a 185 rnl drop in a flow at
approxima:tely 300 0C. The drop has already swelled slightly in the first image
shown; in the last one oily a dark cloud remains. These data were recorded at
1000 frames/sec.
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4_, 00- 0

LI,

8 200-

CD(C)

10 0 "' i - - -- -
250 350 450 550 650

~ 200

FLOW TEMPERATURE MC)
Figture 4. Lifetimes of 240-280 Micrometer Diameter Drops of LGP 1846

as a Fuwiliiou of Flow Temperiature at 500 psi (3.4 MPa)

The observed bezhavior was obviously affected by the presence of the
htolder; bubbles Uirge or small were g. ierally for,,iod away from the fiber. Ill
order to minimize the fiber influence a 390 irm d'ameter drop was mounted on a
20 pirm Fi~ber and subjficted •o a flow of 480°C at 500 psi (3.4 MPa). This drop
site is near the limit of drop diameter for holding onto the fiber reliably in
the flowing g's. The drop images were digitized an't fit by computer. The
resulting hi story is shown in Figure 7. in tLi s figure tile scatter,
especially at eirly timneA is; 'uchtl greater than the comiputer uncertainty in the
f it. The diameter uncertainty as indicated by the scatter for about the first

12



200 ,,see ig probably due to thertual lonsing from the inO-lattlinar flow,
although the image appears motionless. lf it is assumed that tile flow is
filally well established aroutnd 220 msec, then the drop diameter show,3 a
smooth lncrease, possibly due to drop expatision as it heaIts Up. At 240 msec
the drop turns opaque in the time of one frame (0.5 mset), without any change
in the diameter. This sudden opacity is typical of drop behavior under the
conditiond of all of the observations reported here. At later time tne drop
balloons symmetrically, but on a somewhlat nlower time scale than at
atmospherc' pressure. During ballooning the drop also moves somewhat onl tile
fiber. In the next video frame after the last plotted point, only a cloud of
vlpor remains.
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Figure 6. Final Frames from tR.-ating a 185 um Drop Showing Internal
Bu2bble Formation and Drop Gasification
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Figure 7. Diameter History of a 390 Micrometer Diameter Drop of
LGP 1846 in a 480*C Flow at 500 psi (3.4 MPa)

IV. DISCUSSION

The preliminary studies discussed above show that there is promise in
this relatively simple apparatus for understanding the behavior of LGP drops
during at least the ignition phase of a regenerative gun cycle. Since
internal gas bubble formation is so common with these drops, understanding the
effect of the fiber on the drop it holds is important. &s gas bubbles
generally form away from it, the fiber may be either inert or possibly have
some cooling effect. T, has been noted here that "droj.s" with radii near the
size of the fiber diameter behave in a manner not dramatically different from
larger drops as far as following trends with respect to lifetime of the
drop. For larger drops the internal gas bubbles coalesce and expand the drops
more symmetrically, in the manner previously observed in free drops. 7

The cause of the scatter in the lifetimes shown in Figure 5 is
undetermined at present. Fluctuations have been observed in the flow
temperature measurements, interpreted as resulting from a less than ideal flow
and the mixing of.cooler air. However, it is be noted that five of the six
points plotted in Figure 5 in the 240 to 2M0 pm range, plotted as squares,
show an extremely smooth trend with pressure. These data were taken in a
sequence where every effort was made to duplicate all conditions except
pressure. The temperature profiles for those drops were similar to all
others. Further studies are requird to determine what the uncontrolled
variables are and to neasure their influence on drop behavior.

15



It is likely that at atmospheric pressure the driving mechanism of
,nicroexplosions is the homonucleation of superheated water. 9 However, the
strong visual evidence, including the vapor trails from the surface, the loss
of transmission through the drops, and the common conversion of the drop into
a cloud of vapor, suggests substantial liquid phase chemistry. It has been
established earlier' that nitrogen oxides are evolved early in the reactions
of these materials. Thus the evidence of liquid phase ruactions suggests that
the bubble formation in the drops of LGP 1846 at higher pressure may be driven
by gas generated from chemical reactions. However, the slightly different
behavior at these higher pressures might also be a manifestation of the
presence of the fiber. The time scales of the two experiments is not greatly
different. The portion of the drop near the fiber may be cooler than the rest
of the drop if exothermic reactions are increasing the internal temperature in
addition to the conduction. More data are clearly needed at increased
temperatures and at higher pressures. Observations with freely falling drops
might also provide more reproducibility.

V. FUTURE STUDIES

The work presented here is preliminary but provides the foundation for
advancements in several ways. Near term plans include the addition of
spectroscopic diagnostics to identify the gas phase products which evolve from
the drop, especially during early heating. Spectroscopy of the liquid phase
is also being explored. Higher pressures and slightly higher temperatures are
attainable without major modification of the apparatus. After the ignition
point of these LGPs is reached, studies of the flame structure will be pursued
using visualization and spectroscopic techniques. In addition, major
parameters causing scatter in the present studies will be identified. An
effort is also being made to apply acoustic levitation of drops to this
pressurized environment.

VI. CONCLUSION

4 high pressure, high temperature experimental facility has been designed
and fabriacted for the study of liquid gun monopropellants. Preliminary
observations show quali.tatively correct behavior to variations in pressure,
temperature, and drop size. The advantages of steady pressurization are great
and should be incorporated in any future studies on the individual droplet
level.
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